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Numerous formulae, vegetation indices, have been developed to reduce multispectral scanner (MSS) data to a single 
number for assessing vegetation characteristics such as species, leaf area, stress, and biomass. Part I of this report gives 
the history and formulae of some four dozen vegetation indices. Studies investigating the empirical relationships among 
vegetation indices are summarized. Part II of this report develops the idea of two vegetation indices being functionally 
equivalent: Two vegetation indices are taken to be equivalent for making a set of decisions, if the decisions made on the 
"basis of one index could have been equally well made on the basis of tile other index. The utility of these ideas is 
explored in the context of alarm models and graphical displays. Several widely used indices are shown to be equivalent. 

Introduction 

The aim of science is to 
seek the simplest explana- 
tion of complex facts. We 
are apt to fall into the 
error of thinking that the 
facts are simple because 
simplicity is the goal of 
our quest. The guiding 
motto in the life of every 
natural philosopher should 
be, "Seek simplicity and 
distrust it." 
Alfred North Whitehead 

Current and accurate information on a 
global basis regarding the extent and con- 
dition of the world's major food and fiber 
crops is important in today's complex 
world. Traditional sampling techniques for 
estimating crop conditions, based on field 
collection of data, are time-consuming, 
costly, and not generally applicable to 
foreign regions. An alternate approach is 
remote sensing. A series of earth observa- 
tion satellites (Landsats) have provided a 
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potential way to monitor worldwide crop 
conditions (MacDonald and Hall, 1980). 
The sensor system onboard the Landsats, 
the multispectral scanner (MSS), mea- 
sures the reflectance of the scene in four 
wavelength intervals (channels) in the 
visible and near-infrared portions of the 
spectrum. The spectral measurements are 
influenced by the vegetation characteris- 
tics, soil background, and atmospheric 
condition. 

Investigators have developed tech- 
niques for qualitatively and quantitatively 
assessing the vegetative canopy from 
spectral measurements. The objective has 
been to reduce the four channels of MSS 
data to a single number for predicting or 
assessing such canopy characteristics as 
leaf area, biomass, and percent ground 
c o v e r .  

This paper summarizes and references 
the origin, derivation, and motivation for 
some four dozen of these formulae which 
are referred to as vegetation indices (VIs). 
Part II develops the idea of two VIs being 
functionally equivalent for decision mak- 
ing. The meaning and utility of VIs 
equivalence is demonstrated in a se- 
quence of real and hypothetical examples. 

00344257/84/$3.00 
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Development of Vegetation Indices 

Idealized reflectance pat terns  for 
herbaceous vegetation and soil are com- 
pared in Fig. 1. Dead or dormant  vege- 
tation has higher reflectance than living 
vegetation in the visible spectrum and 
lower reflectance in the near-infrared. Soil 
has higher reflectance than green vege- 
tation and lower reflectance than dead 
vegetation in the visible, whereas, in the 
near-infrared, soil typically has lower re- 
flectance than green and dead vegetation 
(Tappan, 1980). Jackson et al. (1980), 
Tucker and Miller (1977), and Deering et 
al. (1975) provide an extensive discussion 
of reflectance properties. 

Numerous vegetation indices have been 
used to make quantitative estimates of 
leaf area index, percent ground cover, 
plant height, biomass, plant population, 
and other parameters (Pearson and Miller, 
1972 and Wiegand et al., 1974). Most 
formtdae are based on ratios or linear 
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combinations and exploit differences in 
the reflectance patterns of green vege- 
tation and other objects as summarized in 
Fig. 1. 

The digital counts (DCs) from the indi- 
vidual MSS channels (CH4, CH5, CH6, 
CH7) have been used to estimate percent 
ground cover and vegetative biomass 
(Wiegand et al., 1974 and Seevers et al., 
1973). The correlation coefficients re- 
ported ranged from 0.30 for CH7 with 
crop cover to 0.88 for CH6 with leaf area 
index. Similar correlations were reported 
by Tucker (1979). 

Ratios of the MSS DCs have been used 
to estimate and monitor green biomass, 
etc. (Rouse et al., 1973; 1974; Carneggie 
et al., 1974; Johnson, 1976, and Maxwell, 
1976). The coefficients of determinations 
were slightly higher than those for the 
corresponding channel differences. The 
12 pairwise ratios (six of which are in- 
verses of the other six) will be denoted by 
R45 = C H 4 / C H 5 ,  R46 = C H 4 / C H 6 ,  etc. 
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FIGURE 1. Idealized reflectmlce patterns of herbaceous vegetation and soil from 0.4 
to 1.1. mm (Deering et al., 1975). 
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Rouse et al. (1973) proposed using the 
normalized difference of DCs from CH7 
and CH5 for monitoring vegetation, which 
will be referred to as ND7. Deering et al. 
(1975) added 0.5 to ND7 to avoid nega- 
tive values and took the square root of the 
result to stabilize the variance. This index 
is referred to as the transformed vege- 
tation index and will be denoted by TVI7. 
Similar formulae using CH6 and CH5 
were proposed: 

the original Landsat data space to a new 
four-dimensional space. They called it the 
"Tasseled Cap" transformation and 
named the four new axes brightness (soil 
brightness index, SBI), greenness (green 
vegetative Index, GVI), yellow stuff (YVI), 
and nonsuch (NSI). The names attached 
to the new axes indicate the characteris- 
tics the indices were intended to measure. 
The coefficients in the following formulae 
are taken from Kauth et al (1978): 

ND6 = (CH6 - CH5) / (CH6 + CH5), 

ND7 = (CH7 - CH5) / (CH7 + CH5), 

TVI6 = (ND6 + 0.5) 1/~, 

TVI7 = (ND7 + 0.5) 1/~. 

Our experience has been that the addi- 
tion of 0.5 does not eliminate all negative 
values. We suggest the following compu- 
rationally correct formulae: 

TVI6 = (ND6 + 0.5)/ABS(ND6 + 0.5) 

× [ABS(ND6 + 0.5)] 1/2, 

TVI7 = (ND7 + 0.5)/ABS(ND7 + 0.5) 

X [ABS(ND7 +0.5)] 1/2, 

where ABS denotes absolute value and 
0 / 0  is set equal 1. In Example 1, it is 
shown that these formulae are equivalent 
for decision making to the basic ratios 
R65 and R75. Therefore, their use can 
only be justified if either they improve 
the regression fit or they normalize the 
regression errors (Draper and Smith, 
1966). 

Kauth and Thomas (1976) used the 
technique of sequential orthogonalization 
underlying the Gram-Schmidt  process to 
produce an orthogonal transformation of 

SBI = 0.332CH4 + 0.603CH5 

+ 0.675 CH6 + 0.262 CH7, 

GVI = - 0.283CH4 - 0.660CH5 

+ 0.577 CH6 + 0.388 CH7, 

YVI = - 0.899 CH4 + 0.428 CH5 

+ 0.076 CH6 - 0.041 CH7, 

NSI = - 0.016 CH4 + 0.131 CH5 

- 0.452 CH6 + 0.882 CH7. 

Wheeler et al. (1976) and Misra et al. 
(1977) applied principal component anal- 
ysis to MSS DC data. The structure of the 
resulting transformation and the interpre- 
tation of the principal components are 
similar to those for the Kauth-Thomas 
transformation: 

M S B I  = 

MGVI = 

MYVI = 

MNSI = 

0.406 CH4 + 0.600 CH5 

+ 0.645 CH6 + 0.243 CH7, 

- 0.386CH4 - 0.530CH5 

+ 0.535 CH6 + 0.532 CH7, 

0.723 CH4 - 0.597 CH5 

+ 0.206CH6 - 0.278CH7, 

0.404CH4 - 0.039CH5 

- 0.505 CH6 + 0.762 CH7. 

The similarity of the Kauth-Thomas 
and Wheeler-Misra results is remarkable 
in light of the fact that the ideas and 
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techniques underlying the two processes 
are quite different. With principal com- 
ponent analysis the experimenter imposes 
no prior order or physical interpretation 
on the principal directions. Principal 
component analysis is in effect a succes- 
sive factorization of the total variation in 
the data into mutually orthogonal compo- 
nents, the order being established by the 
successive directions of maximum varia- 
tion. Gram-Schmidt  orthogonalization, 
however, gives the experimenter the free- 
dom to indirectly establish a physical in- 
terpretation by choosing the order in 
which the calculations are performed. 

Misra et al. (1977) proposed another 
linear transform, based on the idea of 
spectral brightness and contrast. Gener- 
alizations of spectral brightness and con- 
trast were defined in spectral density 
space, and then transformed back to count 
space. The first two components of the 
resulting transformation are similar to the 
first two components of the two preced- 
ing transformations: 

SSBI = 0.437CH4 + 0.564 CH5 

+ 0.661 CH6 + 0.233 CHT, 

SGVI = - 0.437 CH4 - 0.564 CH5 

+ 0.661 CH6 + 0.233 CH7, 

SYVI = - 0.437CH4 + 0.564CH5 

- 0.661CH6 + 0.233 CH7, 

SNSI = - 0.437CH4 + 0.564 CH5 

+ 0.661CH6 - 0.233 CH7. 

Richardson and Wiegand (1977) used 
the perpendicular distance to the "soil 
line" as an indicator of plant develop- 
ment. The "soil line," a two-dimensional 
analogue of the Kauth-Thomas SBI, was 
estimated by linear regression. Two per- 
pendicular vegetation indices were pro- 

posed: 

PVI7 = [(0.355CH7 - 0.149CH5) z 

+ (0.355 CH5 - 0.852 CH7) 2] 1/2, 

PVI6 = [( - 0.498 - 0.457 CH5 

+ 0.498CH6) 2 

+ (2.734 + 0.498CH5 

- 0.543 CH6) ~'] 
1 / 2  

Evidently a minor error was made in 
the derivation of PVI6. The formula for 
PVI6 should be: 

PVI6 = [( - 2.507 - 0.457 CH5 

+ 0.498CH6) 2 

+ (2.734 + 0.498 CH5 

- 0.543 CH6f  2] l/', 

These formulae are computationaUy in- 
efficient and do not distinguish right from 
left of the soil line (water from green 
stuff). The standard formula from analytic 
geometry for the perpendicular distance 
from a point to a line solves this difficulty 
(Salas and Hille, (1978): 

PVI6 = (1.091CH6 - CH5 - 5.49) 

/ ( 1 . 0 9 1 2  + 12 ~/2 p 

PVI7 = ( 2 . 4 C H 7 -  CH5 - 0.01) 

/ (2.42 + 12 )1/2 
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The difference vegetation index (DVI), 
suggested by Richardson and Wiegand 
(1977) as computationally easier than 
PVI7, is essentially a rescaling of PVI7: 

DVI = 2.4 C H 7 -  CH5. 

The Ashburn vegetat ion index 
(Ashburn, 1978) was suggested as a mea- 
sure of green growing vegetation. The 
doubling of CH7 is to make the scale 
compatible: CH7 is 6-bit data and has 
one-half the range of the other three 
bands, which are 8-bit data: 

AVI = 2 . 0 C H 7 -  CH5. 

Hay et al. (1979) proposed a vegetation 
indicator called greenness above bare soil 
(GRABS). This was an attempt to de- 
velop an indicator for which a threshold 
value could be specified for detecting 
green vegetation. The calculations were 
made using the Kauth-Thomas tassel cap 
transformation applied to sun-angle and 
haze-corrected data. The resulting index 
is quite similar to the GVI, since the 
contribution of SBI is less than 10% of 
GVI: 

GRABS = GVI - 0.09178 SBI + 5.58959. 

Kanemasu et al. (1977) regressed winter 
wheat lea/ area measurements of MSS 
band ratios and produced the following 
regression equation: 

ELAI = 2.68 - 3.69 R45 - 2.31R46 

+ 2.88 R47 

+ 0.43 R56 - 1.35 R57 

+ 3.07[R45 - (0.5R47)(R45)]. 

Pollack and Kanemasu (1979) later used 
a larger data set plus stepwise regression 
and obtained another regression equation. 

CLAI = 0.366 - 2.265 R46 

- 0.431(R45 - R47)(R45) 

+ 1.745 R45 + 0.57 PVI7. 

Separate regression equations were also 
obtained for CLAI values above and be- 
low 0.5: 

LAI = 1.903 - 1.138R56 

- 0.071(R45 - R47)R45 

- 0.016 PVI6, 

if CLAI is less than 0.5, 

LAI = - 5.33 + 0.036PVI7 + 6.54TVI6, 

ff CLAI is greater than 0.5. 

Thompson and Wehmanen (1979) pro- 
posed a technique utilizing transformed 
DC data for detection of agricultural 
vegetation undergoing moisture stress. 
The MSS data are rotated into the 
K a u t h - T h o m a s  vectors (GVI, SBI, 
YSI, NSI) to screen out clouds, water, bare 
soil, etc. Each vector is evaluated and any 
vector having values considered unrea- 
sonable for agricultural data is discarded. 
The remaining pixels are considered the 
good pixels. 1% of the pixels with the 
lowest GVI values are then discarded. 
The lowest GVI value remaining becomes 
the soil line. A green number is then 
computed for each pixel by subtracting 
the soil line from GVI. The green index 
number (GIN) is then an estimate of the 
percentage of pixels in the scene with a 
green number greater than or equal to 15: 

number of laixels with 
GIN = a green number of 15 + × 100. 

number of good pixels 
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Empirical Relationships 
among Vegetative Indices 

Richardson and Wiegand (1977) corre- 
lated eight VIs (GVI, DVI, SBI, PVI6, 
PVI7, TVI6, TVI7, and R57) with four 
plant component variables (crop cover, 
shadow cover, plant height, and leaf area 
index). The correlation coefficients ob- 
tained by plant component with the VIs 
(excluding SBI) were very similar. Later, 
Wiegand et al. (1979) correlated leaf area 
indices for winter wheat fields to five VIs 
(TVI7, TVI6, PVI7, PVI6, and GVI). The 
correlation coefficients within and among 
fields were similar. 

Aaronson et al. (1979) studied the simi- 
larities and differences among several VIs 
(AVI, DVI, GVI, PVI7, TVI7, and KVI). 
The obtained correlation coefficients 
ranged from 0.8 to 1.0 and were stable 
from spring greenup to harvest. Aaronson 
and Davis (1979) later used a large data 
set, which included vegetation measure- 
ments and several VIs, to study interrela- 
tionships. The VIs (AVI, DVI, GVI, KVI, 
PVI6, PVI7, TVI6, and TVI7) were corre- 
lated against each other and against vege- 
tation measures such as plant height from 
tillering through harvest. The correlation 
coefficients between the VIs ranged from 
0.81 to 1.00, and those between VIs and 
vegetation measures mostly cluster around 
O.7. 

Lautenschlager and Perry (1981) 
studied the empirical relationships among 
the VIs listed in the above section using 
cluster analysis. The absolute value of the 
bivariate correlations was used as the 
measure of distance between VIs, and 
the average distance between elements 
was used as the between-cluster distance. 
This procedure separated the VIs into 
two large groups plus a number of small 
groups. One large group contained VIs 
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based on CH5 and CH7, which included 
AVI, PVI7, R75, TVI7, and ND7. The 
other large group contained VIs, based on 
CH5 and CH6, and a few VIs involving 
three or all four channels, which included 
GRABS, CLAI, R65, TVI6, ND6, GVI, 
MGVI, PVI6, and SGVI. The VIs within 
these two groups had absolute simple cor- 
relations greater than 0.90, with most 
greater than 0.95. The elements of these 
two large groups were correlated at 0.8 or 
higher. Three smaller groups readily ap- 
parent were: (NSI, R76), (R64,R74), and 
(SBI, MSBI, SSBI, SNSI). 

An Equivalence Relation 
for Spectral Vegetation Indices 

In this section, a definition of VI equiv- 
alence is developed. The utility of this 
definition is demonstrated by examples in 
the context of alarm models and graphical 
display. Vegetation indices are functions 
which associate a real number to each 
four-dimensional MSS DC vector, 
(CH4, CH5, CH6, CH7). To give a precise 
statement of vegetation index equivalence 
it is convenient to employ standard func- 
tion notation: f: S 1 ~ S 2 denotes a func- 
tion from the set S~ into the set $2; f(X), 
the value of f at the point (X) of $1; 
Dom(f) ,  the domain of f; Ran(f) ,  the 
range of f; and f -  1:$2 ~ Sl ' the inverse 
of f when it exists. The inverse exists if, 
and only if, f is one-to-one and onto. The 
composition of two functions has an in- 
verse if, and only if, both functions have 
inverses, in which case ( f o g )  - 1 =  
g- 1 o f -  1. The reader unfamiliar with this 
notation may wish to study Figs. 2-5 
before proceeding to the formal presenta- 
tion that follows. A short explanation of 
the function notation is given in the Ap- 
pendix. 
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It might seem that VI equivalence 
should correspond to function equality; 
i.e., V 1 = V 2 if, and only if, Vx(X ) = V2(X ) 
for each MSS DC vector X. However, this 
requirement is too restrictive because it 
requires that  both VIs have the same 
graph and ignores the decisions made on 
the basis of the VI values. Since vegeta- 
tion indices are formulae used in making 
decisions about crop characteristics and 
conditions, it is appropriate to say that 
two VIs are equivalent if, and only if, the 
same decision results regardless of the VI 
employed. This means that two VIs, V 1 
and V 2, are equivalent for making the set 
of decisions D if, and only if, for every 
decision rule dl: Ran(V1) ~ D, there cor- 
responds a decision rule d2: Ran(V2) ---> D 
such that the decision, based on d 2 and 
V 2, is the same as the decision based on 
d 1 and V 1 for all MSS DC vectors X; that 
is, dl(Vx(X)) = d2(V2(X)) for each X. It is 
easy to see that two vegetation indices, V 1 
and V 2, are equivalent if, and only if, 
there exists a one-to-one onto function T: 
Ran(V 1 ) ---> Ran(Vg.) such that T o V 1 = V2. 
Thus the same decision results regardless 
of the VI used; that  is, 

Many tedious computat ions are avoided 
by using these properties. 

A number  of studies have investigated 
the transformed vegetation indices TVI6 
and TVI7 and the corresponding ratios 
R65 and R75 as predictors of biomass, 
leaf area, plant height, and percent  cover. 
The predictive ability of TVI6 and R65 or 
TVI7 and R75 are similar as evidence by 
the estimated correlation coefficient. We 
now show that the transformed vegeta- 
tion index and its generalizations are 
equivalent to the corresponding ratios. 
The  sequence of examples that  follows 
will make clear not only the algebraic and 
geometric meanings of VI equivalence but  
also demonstrate the utility and ap- 
propriateness of this definition. 

Example 1 

Let a and b be positive constants, and 
define the functions f ,  g, and T by 

f (  Xs, X7 ) = ( aX7 - bXs ) / (  aX7 + bXs), 

g(Xs,  X7) = X T / X  ~, 

T(y)  = (b/a)[(1  + y ) / ( 1  - y)] 

V~l[T-~(d)] = (To V1)-~(d)= V~l(d)  

(1) 

for each decision d in D, where the super- 
script - 1 indicates the inverse image of 
d under  the given function. The  relation- 
ship defined is an equivalence relation on 
the set of vegetation indices; that is, 

(i) Each VI is equivalent to itself: re- 
flexive property. 

(ii) If V 1 is equivalent to V 2, then V 2 is 
equivalent to V~: symmetric prop- 
erty. 

(iii) If V 1 is equivalent to V z and V z is 
equivalent to V 3, then V l is equiva- 
lent to V3: transitive property. 

for X 5 and X 7 positive and ABS(~/) less 
than one. Observe that T is invertible; in 
fact, 

T-a(z)=(az- b)/(az q- b) 

for z positive. 
Thus, f and g are equivalent and the 
values of f can be computed  from the 
values of g and vice versa: 

(T o £ ) (X  5, X7) = g(Xs, X7), 

(r- o g)(Xs, XT)= f(xs, xT). 

The relationship between ND7 and R75 
is illustrated in Fig. 2. The important  
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FIGURE 2. The equivalence of vegetatiou in 
dices meaals the value of one index can be 
computed from the value of the other index, The 
flow chart outlines the computation of ND7 
from R75. 

point is: Knowing the value of one index 
is equivalent to knowing the value of the 
other index-- the  indices are therefore 
equivalent for decision making. 

The equivalence of TVI7 and R75 is 
shown as follows: Let k and p be real, and 
define the functions G: ( -  1 , 1 ) - - + ( k -  
1, k + l )  and H: ( k - l , k + l ) - + ( L , U )  

by 

G(v)=v+k,  

H(w) = w[ABS(w)]" 1 

for w between k - 1 and k + 1, L = (k - 
1)[ABS(k - 1)] '-  1, t [  = (k  + 1)[ABS(k + 
1)]~, t for ABS(v) < 1 and 0 / 0  defined 
as 1. It is easy to verify that G and H are 
one-to-one and onto and that 

(H o G o T-1 o g)(X.5, XT) 

= 

× [ A B S ( f ( X s ,  X r )+ k ) ]  p t 

Taking k = p = 1 / 2  and a = b = 1 yields 
a one-to-one function between TVI7 and 
R75: 

( H o G o T  ~ )R 75=T VI7 .  

Another way to view VI equivalence is 
that equivalent VIs divide the DC space 
into the same set of equivalence classes. 
This interpretation is illustrated graphi- 
cally in Fig. 3. 

R75 

12~ 4 z~ 88 44 44 
12~4 24 

OH5 ;H7 OH7 CH5 CH7 
F I G U R E S  3(a), 3(b) ,  and  3(c). T i le  response surfaces of  R75,  N D 7 ,  and T V I 7  de te rm ine  the same equ iva lence  classes 

- - t h e  set of  l ines e m a n a t i n g  f rom the  o r ig in  in the  two< l imens iona ]  D C  space. 
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Example 2 

This example illustrates the utility of VI 
equivalence in the context of alarm mod- 
els. Suppose we take as our decision rule: 

• Sound a "warning bell" if ND7 is 
above 

B = 0.5. 

Using the relationships developed in Ex- 
ample 1, it is easy to see that equivalent 
decision rules based on R75 and TVI7 
are: 

• Sound a "  warning bell" if R75 is above 

A = (1+ B ) / ( 1 -  B ) =  3.0. 

• Sound a "warning bell" if TVI7 is 
a b o v e  

C = ~/ABS(B) +0.5 =1 .  

Applying the hypothetical alarm model 
to spectral data taken in 1980'-81 over a 
winter wheat field in Wilbarger County, 
Texas, one sees that precisely the same 
action is taken regardless of the decision 
rule used (Fig. 4). The bell rang from 17 
November through 10 January. 

Example 3 

As a last illustration, VI equivalence is 
examined in the context of false color 
display of digital spectral data. Figures 
5(a) and 5(b) show two false color images 
produced from two channels of multi- 
spectral data. The color assignments in 
Fig. 5(a) are made using a ratio of the 
two channels; the intervals associated with 
the different colors are indicated in the 
attached scale. The color assignments in 
Fig. 5(b) are made using the normalized 
difference of the same two channels; as 
before, the intervals associated with the 
different colors are indicated in the at- 
tached scale. 

Clearly, the same information is not 
displayed in both images. One might ask 
the question: Which index is superior for 
displaying this type of data? Neither! This 
can be reasoned as follows. Using the 
relationships developed in Example 1, the 
same color assignments can be made in 
Fig. 5(a) using the normalized difference. 
The interval divisions associated with the 
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FIGURE 4. The hypothetical alarm model shows that no matter which VI is used 
exactly the same decision will be made. This illustrates that VI's can be equivalent 
/or decision making and not have the same graph. 
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FIGURE 5. The two images look very different. This difference results from the color assigjnnent 
intervals rather than from the VI used. Tile top image can be produced from tile norma.lized 
difference, and the bottom image can be produced from the ratio by using the color assignment 
intervals specified in Table 1. 
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TABLE 1 Interval Division for Producing the False Color Image. 

INTE~Wm DIVISIONS 

FIe. 5(A) FIG. 5(B) 

USING USING 
USING NORMALIZED NORMALIZED USING 
RATIO DIFFERENCE DIFFERENCE RATIO 

6.0 0.86 0.8 9.00 
5.4 0.69 0.7 5.67 
4.8 0.66 0.6 4.00 
4.2 0.62 0.5 3.00 
3.6 0.57 0.4 2.33 
3.0 0.56 0.3 1.86 
2.4 0.41 0.2 1.56 
1.8 0.29 0.1 1.22 
1.2 0.09 0.0 1.00 
0.6 - 0.25 - 0.1 0.82 
0.0 - 1.00 - 0.2 0.67 

Assuming the ratio, the Assuming the normalized 
corresponding normalized difference, the corre- 

difference is sponding ratio is 
ratio - 1 1 + ND 

ND ratio = - -  
ratio + 1 1 - ND 
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normalized difference are given in col- 
umn 2 of Table 1. Similarly the color 
assignments in Fig. 5(b) can be made 
using the ratio and the interval division 
given in column 4 of Table 1. Thus, it is 
not a question of which index is superior 
or more sensitive. It is how the interval 
divisions are chosen. The authors are in- 
debted to Dr. Ray Jackson (USDA/ARS, 
Phoenix, Arizona) and Mr. John Millard 
(Ames Research Center, Moffett Field, 
California) for the color imagery used in 
this example. 

Summary and Conclusions 

the empirical relationships among them. 
Most formulae fall into one of two basic 
categories: those that use ratios or those 
that use differences to exploit the spectral 
characteristics of soil and vegetation. Part 
II of this paper developed the idea of two 
vegetation indices being equivalent: two 
indices were taken to be equivalent, if the 
decision made on the basis of one index 
could have equally well been made on the 
basis of the other index. The significance 
of this idea was studied by example in 
several contexts, and it was shown that 
for all practical purposes several widely 
used indices are equivalent. 

Since the launch of Landsat 1 in 1972, 
investigators have derived numerous for- 
mulae for the reduction of multispectral 
scanner measurements to a single value 
for predicting and assessing vegetation 
characteristics such as species, leaf area, 
stress, and biomass. Part I of this paper 
summarized many of these formulae and 

Appendix. Modem Function Notation 

Almost as basic to modem mathematics 
as the concept of a set is the concept of a 
function. If A and B are sets, a function f 
from A into B is a rule which associates 
with each element x of A an element f (x)  
of B. If f is a function from A to B, one 
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writes f: A ~ B. If x ~ A, then f (x )  is 
called the value of f at x. Often flmctions 
are thought of as transforms or maps from 
one set into another. In today's terminol- 
ogy the terms "transformation," "map- 
ping," and "operator" are synonomous 
with function. If f: A--,  B and x ~ A, 
then one says that f maps x to f (x) .  An 
example illustrate these concepts. Let A 
be any nonempty set. The function f:  
A --* A defined by f ( a  ) = a for all a ~ A 
is called the identity function and is de- 
noted i A. 

If f: A ~ B is a hmction, the set A is 
called the domain of f and the set B is 
called the range of f .  A function is de- 
fined by specifying its value for each 
element belonging to its domain. Two 
functions f and g from A to B are said to 
be equal if f ( x )  = g(x) for all x ~ A. 

Suppose that g: A ~ B and f:  B ~ C 
are functions. If x ~ A,  then we may 
define a function from A into C by first 
mapping x to f ( x )  and then mapping 
f (x )  to f (g(x)) .  This function is called the 
composite of f and g and is denoted by 
f o g. According to the above definitions 

( f o g ) x = f ( g ( x ) ) .  

Let f:  A --* B be a function. Then f is 
said to be one-to-one if, f ( x ) =  f l y )  im- 
plies x = y. For example, if f: R ~ R is 
the function f (x )  = 5 x + 3, then f is one- 
to-one, because 5x + 3  = 5{t + 3  implies 
that x = y. The flmction g(x) = x 2 is not 
one-to-one, since g(3) = g( - 3). 

A function f:  A --* B is said to be onto 
if, for every y ~ B, there exists an x ~ A 
such that f ( x )  = y. For example, f ( x )  = 
5x + 3 is onto, since for every y ~ R one 
has f ( ( y  - 3) /5)  = y. However, g(x) = x 2 
is not onto, since there does not exist a 
real number x such that f (x )  = - 1. 
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If f:  A ~ B is one-to-one and onto, then 
for every b ~ B, there is exactly one a ~ A 
such that f ( a ) =  b. Therefore, one may 
define the function f l: B ~ A by f f  ~(b) 
= a. The function f 1 is called the in- 
verse of f .  Clearly, one has 

f ° f  ~=i1~ 

and 

f l o f = i A .  

If f:  A ---, B and C is a subset of B, the 
set [a ~ A I f (a)  ~ C] is called the inverse 
image of C, and is denoted by f 1[C]. 
The collection of all inverse images of the 
singleton set [b], as b ranges over B, 
partitions the set A into mutually disjoint 
sets. The individual members of this col- 
lection are called equivalence classes. For 
example, if r: R + X  R ~ ~ R is the func- 
tion r(x, y) = x / y, the equivalence class 
f l [ b ] = [ ( x , y )  x / y = b ]  is the line 
emanating from the origin and having 
slope b I. 

References 

Aaronson, A. C., and Davis, L. L. (1979), An 
evaluation of relationships between vegeta- 
tive indices, soil moisture and wheat yields, 
Technical Memorandlma No. 9, Crop Con- 
dition Assessment Division, USDA/FAS, 
Houston, TX. 

Aaronson, A. C., Davis, L. L., and May, G. A. 
(1979), Results of the vegetative index cor- 
rection study, Technical Memorandum No. 
6, Crop Condition Assessment Division, 
USDA/FAS, Houston, TX. 

Ashburn, P., (1978), The vegetative Index 
Number and crop identification, The 
LACIE Symposium, Proceedings of the 
Technical Session, pp. 843-856. 



EQUIVALENCE OF SPECTRAL VEGETATION INDICES 181 

Carneggie, D. M., de Gloria, S. D., and 
Colwell, R. N. (1974), Usefulness of ERTS-1 
and supporting aircraft data for monitoring 
plant development and range conditions in 
California's annual grassland, BLM Report 
53500-CT3-266 (N). 

Deering, D. W., Rouse, J. W., Haas, R. H., 
and Sehell, J. A. (1975), Measuring "forage 
production" of grazing units from Landsat 
MSS data, Proceedings of the 10th Interna- 
tional Symposium Remote Sensing of En- 
vironment, Vol. II, pp. 1169-1178. 

Draper, N. R., and Smith, H. (1966), Applied 
Regression Analysis, Wiley, New York. 

Hay, C. M., Kuretz, C. A., Odenweller, J. B., 
Scheffner, E. J., and Wood, B. (1979), De- 
velopment of AI procedures for dealing 
with the effects of episodal events on crop 
temporal spectral response, AgRISTARS 
SR-Bg-00434, Contract NAS 9-14565. 

Jackson, R. D., Pinter, P. J., Jr., Reginato, 
R. J., and Idso, S. B. (1980), Hand-held 
radiometry, USDA-SEA, Agric. Reviews 
and Manuals, ARM-W-19. 

Johnson, G. R., 1976, Remote estimation of 
herbaceous Biomass, M.S. Thesis, Colorado 
State University, Ft. Collins. 

Kanemasu, E. T., Heilman, J. L., Bagley, 
J. O., and Powers, W. L. (1977), Using 
landsat data to estimate evapotranspiration 
of winter wheat, Environ. Mgt. 1:515-520. 

Kauth, R. J., and Thomas, G. S. (1976), "The 
Tassel Cap--A graphic description of the 
spectral-temporal development of agricult- 
ural crops as seen by Landsat, Proceedings 
of the Symposium on Machine Processing 
of Remotely Sensed Data, IEEE Catalogue 
No. 76, Ch. 1103-1 MPRSD, LARS, Purdue, 
University, West Lafayette, Indiana. 

Kauth, R. J., Lambeck, P. F., Richardson, W., 
Thomas, G. S., and Penfland, A. P. (1978), 
Feature extraction applied to agricultural 
crops as seen by Landsat, The LACIE 

Symposium Proceedings of the Technical 
Session, pp. 705-722. 

Lautenschlager, L. F., and Perry, C. R., Jr. 
(1981a), An empirival, graphical, and ana- 
lytical study of the relationships between 
vegetative indices, AgRISTARS EW-J1- 
04150, JSC 17424. 

Lantenschlager, L. F., and Perry, C. R., Jr. 
(1981b), Comparison of vegetation indices 
based on satellite-acquired data, Proceed- 
ings of the Survey Research Methods Sec- 
tion of the American Statistical Association, 
pp. 77-82. 

MacDonald, R. B., and Hall, F. G. (1980), 
Global crop forecasting, Science, 
208:670-678. 

Maxwell, E. L. (1976), Multivariate system 
analysis of multispectral imagery, Photo- 
gram. Eng. Remote Sens. 42:1173-1186. 

Misra, P. N., and Wheeler, S. G. (1977). 
Landsat data from agriculhtral sites--Crop 
signature analysis, Proceedings of the l l th  
International Symposium on Remote Sens- 
ing of the Environment, ERIM. 

Misra, P. N., Wheeler, S. G., and Oliver, R. E. 
(1977), "Kauth-Thomas brightness and 
greenness axes, IBM personal communica- 
tion, Contract NAS 9-14350, RES 23-46. 

Pearson, R. L., and Miller, L. D. (1972), Re- 
mote mapping of standing crop biomass for 
estimation of the productivity of the 
shortgrass prairie, Eighth International 
Symposium on Remote Sensing of Environ- 
ment, University of Michigan, Ann Arbor. 

Pollock, R. B., and Kanemasu, E. T. (1979), 
Estimating leaf-area index of wheat with 
Landsat data, Remote Sens. Environ. 
8:307-312. 

Richardson, A. J., and Wiegand, C. L. (1977), 
Distinguishing vegetation from soil back- 
ground information, Photogram. Eng. Re- 
mote Sens., 43:1541-1552. 

Rome, J. W., Haas, R. H., Schell, J. A., and 
Deering, D. W. (1973), Monitoring vegeta- 
tion systems in the Great Plains with ERTS, 
Third ERTS Symposium, Vol. I. 



182 

Rouse, J. w., Haas, R. H., Schell, J. A., 
Deering, D. W., and Harlan, J. C. (1974), 
Monitoring the vernal advancement and 
retrogradation (greenwave effect) of natal- 
ral vegetation, NASA/GSFC Type III Fi- 
nal Report, Greenbelt, Maryland: 

Salas, S. L., and Hille, E. (1978), Calculus, 
3rd ed., Wiley, New York, p. 368. 

Seevers, P. M., lewis, D. T., and Drew, J. v. 
(1973), Applications of ERTS-1 imagery in 
mapping and managing soils and range re- 
sources in the sand hills of Nebraska, Pro- 
ceedings of the Symposium on Significant 
Results from ERTS-1, Vol. 1. 

Tappan, Gray (1980), The Monitoring of 
Green Vegetation Cover in the Kansas Flint 
Hills from Landsat Data, KARS, Univ. of 
Kansas, Lawrence. 

Thompson, D. R. and O. A. Wehmanen 
(1979), Using Landsat Digital Data to De- 
tect Moisture Stress, Photogrammetric En- 
gineering and Remote Sensing, 45:201-207. 

Tucker, C. J. and L. D. Miller (1977), Soil 
Spectra Contributions to Grass Canopy 

C. R. PERRY, JR. AND L. F. LAUTENSCHLAGER 

Spectral Reflectance, Photogrammetric En- 
gineering and Remote Sensing, 43:721-726. 

Tucker, C. J. (1979), Red and Photographic 
Infrared Linear Combinations for Monitor- 
ing Vegetation, Remote Sensing of En- 
vironment, 8:127-150. 

Weigand, C. L., Gausman, H. W., Cuellar J. 
A., Gerberman A. H., and Richardson A. J. 
(1974), Vegetation Density as Deduced 
from ERTS-1 MSS Response, Third ERTS-I 
Symposium, Vol. I. 

Weigand, C. L., Richardson A. J., and 
Kanemasu E. T. (1979), Leaf Area Index 
Estimates for Wheat from Landsat and 
Their Implications for Evapotranspiration 
and Crop Modeling, Agron. 1. 71:336-342. 

Wheeler, S. G., Misral P. N., and Holmes A. 
Q. (1976), Linear Dimensionality of Land- 
sat Agricultural Data with Implications for 
Classification, Proc. of the Symp. on Mac- 
hine Processing of Remotely Sensed Data, 
LARS, Purdue University. 

Received 15 April 1983; revised 15 August 1983. 


